Changed membrane integration and catalytic site conformation are two mechanisms behind the increased Aβ42/Aβ40 ratio by presenilin 1 familial Alzheimer-linked mutations

نویسندگان

  • Johanna Wanngren
  • Patricia Lara
  • Karin Öjemalm
  • Silvia Maioli
  • Nasim Moradi
  • Lu Chen
  • Lars O. Tjernberg
  • Johan Lundkvist
  • IngMarie Nilsson
  • Helena Karlström
چکیده

The enzyme complex γ-secretase generates amyloid β-peptide (Aβ), a 37-43-residue peptide associated with Alzheimer disease (AD). Mutations in presenilin 1 (PS1), the catalytical subunit of γ-secretase, result in familial AD (FAD). A unifying theme among FAD mutations is an alteration in the ratio Aβ species produced (the Aβ42/Aβ40 ratio), but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP) processing phenotype. Most mutations studied caused an increase in the Aβ42/Aβ40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aβ42/Aβ40 ratio did also display an impaired APP intracellular domain (AICD) formation and a lower total Aβ production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aβ42/Aβ40 ratio are associated with a decrease in total γ-secretase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Regulation of Amyloid Precursor Protein/Presenilin 1 Interaction during Ab40/42 Production Detected Using Fusion Constructs

Beta amyloid peptides (Aβ) play a key role in the pathogenesis of Alzheimer disease (AD). Presenilins (PS) function as the catalytic subunits of γ-secretase, the enzyme that releases Aβ from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Familial Alzheimer disease (FAD)-linked PSEN mutations alter APP processing in a manner that increases the relative abundance...

متن کامل

Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations.

The amyloid β-peptide (Aβ), strongly implicated in the pathogenesis of Alzheimer's disease (AD), is produced from the amyloid β-protein precursor (APP) through consecutive proteolysis by β- and γ-secretases. The latter protease contains presenilin as the catalytic component of a membrane-embedded aspartyl protease complex. Missense mutations in presenilin are associated with early-onset familia...

متن کامل

Presenilin-1 Knockin Mice Reveal Loss-of-Function Mechanism for Familial Alzheimer’s Disease

Presenilins play essential roles in memory formation, synaptic function, and neuronal survival. Mutations in the Presenilin-1 (PSEN1) gene are the major cause of familial Alzheimer's disease (FAD). How PSEN1 mutations cause FAD is unclear, and pathogenic mechanisms based on gain or loss of function have been proposed. Here, we generated Psen1 knockin (KI) mice carrying the FAD mutation L435F or...

متن کامل

Presenilin-1 mutations and Alzheimer's disease.

Mutations in the PSEN1 gene, encoding presenilin-1 (PS1), are themost common cause of familial Alzheimer’s disease (FAD). PS1 functions as the catalytic subunit of γ-secretase, an intramembranous protease that cleaves a variety of type 1 transmembrane proteins, notably including the amyloid precursor protein (APP) and Notch. Following prior cleavage by β-secretase, processing of APP by γ-secret...

متن کامل

Loss of Aβ43 Production Caused by Presenilin-1 Mutations in the Knockin Mouse Brain

We recently reported that homozygous Presenilin-1 (Psen1) knockin (KI) mice carrying the familial Alzheimer's disease (FAD) mutation L435F or C410Y recapitulate the phenotypes of Psen1(-/-) mice. Production and steady-state levels of Aβ40 and Aβ42 are undetectable in KI/KI brains and reduced in KI/+ brains, though the Aβ42/Aβ40 ratio is slightly increased in KI/+ brains. Moreover, the FAD mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014